The problems with ORM

he whole point of an abstraction is that it is supposed to simplify. An abstraction of SQL that requires you to understand SQL anyway is doubling the amount you need to learn: first you need to learn what the SQL you’re trying to run is, then you have to learn the API to get your ORM to write it for you. In Hibernate, to perform complicated SQL you actually have to learn a third language, HQL, which is maddeningly almost-but-not-quite SQL, which then gets translated to SQL for you.

A defender of ORM will say that this is not true of every project, that not everyone needs to do complicated joins, that ORM is an “80/20” solution, where 80% of users need only 20% of the features of SQL, and that ORM can handle those. All I can say is that in my fifteen years of developing database-backed web applications that has not been true for me. Only at the very beginning of a project can you get away with no joins or naive joins. After that, you need to tune and consolidate queries. Even if 80% of users need only 30% of the features of SQL, then 100% of users have to break your abstraction to get the job done.

The representation of your object in memory depends what you intend to do with it, and context-sensitive representation is not a feature of OO design. Relations are not objects; objects are not relations. This leads naturally to another problem of ORM: inefficiency. When you fetch an object, which of its properties (columns in the table) do you need? ORM can’t know, so it gets all of them (or it requires you to say, breaking the abstraction). Initially this is not a problem, but when you are fetching a thousand records at a time, fetching 30 columns when you only need 3 becomes a pernicious source of inefficiency. Many ORM layers are also notably bad at deducing joins, and will fall back to dozens of individual queries for related objects. As I mentioned earlier, many ORM layers explicitly state that efficiency is being sacrificed, and some provide a mechanism to tune troublesome queries.

If your data is objects, stop using a relational database. The programming world is currently awash with key-value stores that will allow you to hold elegant, self-contained data structures in huge quantities and access them at lightning speed. There’s no law that says Step One of writing any web app is installing MySQL. The massive over-application of relational databases to every data representation problem is one of the reasons SQL has acquired a bad reputation in recent years, when in fact the problem is lazy design.

The best way to represent relational data in object-oriented code is still through a model layer: encapsulation of your data representation into a single area of your code is fundamentally a good idea. However, remember that the job of your model layer is not to represent objects but to answer questions. Provide an API that answers the questions your application has, as simply and efficiently as possible. Sometimes these answers will be painfully specific, in a way that seems “wrong” to even a seasoned OO developer, but with experience you will get better at finding points of commonality that allow you to refactor multiple query methods into one.


Ovaj unos je objavljen u Nekategorizirano. Bookmarkirajte stalnu vezu.


Popunite niže tražene podatke ili kliknite na neku od ikona za prijavu: Logo

Ovaj komentar pišete koristeći vaš račun. Odjava /  Izmijeni )

Google photo

Ovaj komentar pišete koristeći vaš Google račun. Odjava /  Izmijeni )

Twitter picture

Ovaj komentar pišete koristeći vaš Twitter račun. Odjava /  Izmijeni )

Facebook slika

Ovaj komentar pišete koristeći vaš Facebook račun. Odjava /  Izmijeni )

Spajanje na %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.